

COMPILER
DESIGN

Dr. M. Amutha
Assistant Professor, Dept. of IT

VSB College of Engineering Technical Campus
Coimbatore, (TN), INDIA

Mr. A. Mohan Raj
Assistant Professor, Dept. of IT

VSB College of Engineering Technical Campus
Coimbatore, (TN), INDIA

Dr. G. Simi Margarat
Associate Professor, Dept. of CSE

Rrase College of Engineering
Chennai, (TN), INDIA

COMPILER DESIGN

Copyright© : Dr. Amutha M.
Publishing Rights : VSRD Academic Publishing
 A Division of Visual Soft India Pvt .Ltd.

ISBN-13: 978-81-952115-6-2
FIRST EDITION, MARCH 2021, INDIA

Printed & Published by:
VSRD Academic Publishing
(A Division of Visual Soft India Pvt. Ltd.)

Disclaimer: The author(s) are solely responsible for the contents compiled in this book.
The publishers or its staff do not take any responsibility for the same in any
manner.Errors, if any, are purely unintentional and readers are requested to
communicate such errors to the Authors or Publishers to a void discrepancies in future.

All rights reserved. No part of this publication may be reproduced ,stored in a retrieval
system or transmitted, in any formor by any means, electronic, mechanical, photo-
copying, recording or otherwise, without the prior permission of the Publishers & Author.

Printed & Bound in India

VSRD ACADEMIC PUBLISHING
A Division of Visual Soft India Pvt. Ltd.

REGISTEREDOFFICE
154, Tezab mill Campus, Anwarganj, KANPUR–208003 (UP) (IN)
Mb:9899936803, Web:www.vsrdpublishing.com, Email:vsrdpublishing@gmail.com

MARKETINGOFFICE
340, AdarshNagar, Oshiwara, Andheri(W), MUMBAI–400053 (MH) (IN)
Mb:9956127040, Web:www.vsrdpublishing.com, Email:vsrdpublishing@gmail.com

http://www.vsrdpublishing.com,
mailto:Email:vsrdpublishing@gmail.com
http://www.vsrdpublishing.com,
mailto:Email:vsrdpublishing@gmail.com

P R E F A C E

This book presents the subject of Compiler Design in a
way that's understandable to a programmer.A compiler
translates (or compiles) a program written in a high-level
programming language, that is suitable for human
programmers, into the low-level machine language that
is required by computers. During this process, the
compiler will also attempt to detect and report obvious
programmer mistakes. Using a high-level language for
programming has a large impact on how fast programs
can be developed. The main reasons for this are
compared to machine language, the notation used by
programming languages is closer to the way humans
think about problems. Programs written in a high-level
language tend to be shorter than equivalent programs
written in machine language. Anadvantage of using a
high-level language is that the same program can be
compiled to many different machine languages and,
hence, be brought to run on many different machines.

Unit I: Presents an INTRODUCTION ABOUT
STRUCTURE OF A COMPILER AND LEXICAL
ANALYSISwhich is the initial part of reading and
analyzing the program text: The text is read and divided
into tokens, each of which corresponds to a symbol in the
programming language, Lexical analysis is often
abbreviated to lexing. This unit also specifies the theory
of finite automata and regular expressions, and then
applies this theory to the construction of a scanner.

Unit II: Presents SYNTAX ANALYSIS phase that takes
the list of tokens produced by the lexical analysis and
arranges these in a tree structure (called the syntax tree)
that reflects the structure of the program. This phase is

often called parsing. This unit also provides the theory of
context-free grammars as it pertains to various parsing
techniques such as Recursive Descent Parser , Predictive
Parser LL(1), Shift Reduce Parser and LR Parser such
as LR (0), SLR(1) Parsing Table, LALR(1) Parser,
CLR(1), Error Handling and Recovery in Syntax
Analyzer, YACC

Unit III: Presents the INTERMEDIATE CODE
GENERATION in which the program is translated to a
simple machine-independent intermediate language.
This phase analyses the syntax tree to determine if the
program violates certain consistency requirements. This
unit is a comprehensive account of static semantic
analysis, focusing on attribute grammars and syntax tree
traversals. It also discusses code generation, both for
intermediate code such as three-address code and for
executable object code for a simple architecture, for which
a simulator is given. It gives extensive coverage to the
construction of symbol tables and static type checking, of
semantic analysis

Unit IV: This unit Presents RUN-TIME
ENVIRONMENT AND CODE GENERATION which
discusses the common forms of runtime environments,
from the fully-static environment, through the many
varieties of stack-based environments. This unit also
provides an implementation for a heap of dynamically-
allocated storage. The symbolic variable names used in
the intermediate code are translated to numbers, each of
which corresponds to a register in the target machine
code. The intermediate language is translated to
assembly language (a textual representation of machine
code) for a specific machine architecture. Assembly and
linking The assembly language code is translated into
binary representation and addresses of variables,

functions, etc., are determined

Unit V: This unit presents CODE OPTIMIZATION
techniques and Principal Sources of Optimization, Peep
hole optimization , DAG, Optimization of Basic Blocks,
Global Data Flow Analysis, Efficient Data Flow
Algorithm.

 Dr. M.Amutha

 Mr.A.Mohan Raj

 Dr. G.Simi Margarat

A C K N O W L E D G E M E N T

First of all I would like to thank Almighty and I owe an
immense debt of gratitude to my family members Mr. S.
M. Thomas(Husband), and my Daughters Ms. S. Blessy
Evangeline, S. Princy joy has given major supportand
assistance which made it possible for me to write this
book.

I’m extremely grateful to the Management,Thiru. V.S.
Balsamy, the Founder and Correspondent of the V.S.B
Group of Institutions, Director, Dr. R. Saravanakumar,
Principal, Mr. U. SathishVice Principal, Mr. P. Dinesh
Kumar HOD / CSE, Dr. M. Ramesh Kumar, HOD/IT of
VSBCETC, Coimbatore, for giving me a wonderful
opportunity and manifest to complete the work and
Publishing this book Successfully.

I express my obligations tomy coauthor Mr. A.
Mohanraj, AP/IT and Dr Simi Margarat, ASP/CSE, Rrase
College of Engineering who has contributed
tremendously for writing this book.

Finally, I also thank all my friends, colleagues, for giving
me moral support to complete the book Successfully.

 Dr. Amutha M.

D E D I C A T E D T O O U R

B E L O V E D

F A M I L Y M E M B E R S

A N D

T O O U R F R I E N D S

C O N T E N T S

CHAPTER 1.
INTRODUCTION TO COMPILERS 1
1.1. WHAT IS A COMPILER? .. 1
1.2. SINGLE PASS COMPILER .. 3
1.3. LANGUAGE PROCESSING SYSTEMS .. 4
1.4. STEPS FOR LANGUAGE PROCESSING SYSTEMS 4
1.5. COMPILER CONSTRUCTION TOOLS .. 6
1.6. STRUCTURE OF A COMPILER ... 7
1.7. LEXICAL ANALYSIS ... 8
1.8. BASIC TERMINOLOGIES ... 9
1.9. LEXICAL ANALYZER ARCHITECTURE ... 9
1.10. SYNTAX ANALYSIS ... 13
1.11. NEED OF PARSING ... 15
1.12. INPUT BUFFERING ... 23
1.13. SPECIFICATION OF TOKENS ... 26
1.14. LEX .. 29
1.15. PRACTICE PROBLEMS BASED ON CONVERTING NFA

TO DFA .. 45
1.16. PRACTICE PROBLEMS BASED ON MINIMIZATION OF

DFA ... 54

CHAPTER 2.
SYNTAX ANALYSIS .. 63
2.1. THE ROLE OF PARSER .. 63
2.2. ERROR HANDLING ... 65
2.3. CONTEXT-FREE GRAMMARS .. 67
2.4. PRACTICE PROBLEMS BASED ON LEFT RECURSION

ELIMINATION .. 82
2.5. AMBIGUITY ... 91
2.6. PARSER.. 91

2.7. TOP-DOWN PARSING .. 118
2.8. BOTTOM-UP PARSING... 128
2.9. OPERATOR-PRECEDENCE PARSING...................................... 132

CHAPTER 3.
INTERMEDIATE CODE GENERATION 137
3.1. SYNTAX DIRECTED DEFINITIONS .. 137
3.2. EVALUATION ORDER ... 143
3.3. INTERMEDIATE LANGUAGES ... 146
3.4. THREE ADDRESS CODE: ... 152
3.5. TYPES AND DECLARATIONS ... 160

CHAPTER 4.
RUN-TIME ENVIRONMENT AND CODE
GENERATION .. 172
4.1. STORAGE ORGANISATION ... 172
4.2. STORAGE ALLOCATION STRATEGIES 174
4.3. ACTIVATION RECORD (IMP) .. 174
4.4. BLOCK STRUCTURE AND NON BLOCK STRUCTURE

STORAGE ALLOCATION ... 175
4.5. PARAMETER PASSING METHODS .. 177
4.6. COPY RESTORE .. 178
4.7. CALL BY NAME .. 179
4.8. ACCESS TO NON-LOCAL DATA ON THE STACK 179
4.9. ISSUES WITH NESTED PROCEDURES 179
4.10. A LANGUAGE WITH NESTED PROCEDURE DECLARATIONS .. 180
4.11. DIRECTED ACYCLICGRAPH ... 184
4.12. ISSUES IN DESIGN OF CODE GENERATION: 187
4.13. DESIGN OF CODE GENERATOR .. 192

CHAPTER 5.CODE OPTIMIZATION 196
5.1. PRINCIPAL SOURCES OF OPTIMISATION 196
5.2. PEEPHOLE OPTIMIZATION ... 203

5.3. THE DAG REPRESENTATION FOR BASIC BLOCKS 209
5.4. OPTIMIZATION OF BASIC BLOCKS .. 213
5.5. INTRODUCTION TO GLOBAL DATAFLOW ANALYSIS 216
5.6. CODE IMPROVIG TRANSFORMATIONS 224

CHAPTER 6.QUESTION BANK....................................... 232
6.1. UNIT I : INTRODUCTION TO COMPILERS 232
6.2. UNIT II : SYNTAX ANALYSIS .. 251
6.3. UNIT III : INTERMEDIATE CODE GENERATION 263
6.4. UNIT IV: RUN-TIME ENVIRONMENT AND CODE

GENERATION ... 270

